
Some Improvements of a Decoding Algorithm
for Linear Codes

Mr Miodrag Živković∗

December 2, 2005

Abstract

A probabilistic method for decoding linear codes is considered,
where a posteriori probabilities of error (APPE) are repeatedly com-
puted. Methods for more precise and more efficient computation of
APPE are proposed. These methods are useful when combined with
some information set decoding method.

∗The author is with the Institute for applied mathematics and electronics, Beograd,
Yugoslavia; mailing address is: Miodrag Živković, 11000 Beograd, Paunova 61/16,
Yugoslavia

1



Introduction

Binary linear (n, k) code C with the parity check r×n matrix H is the null-
space of H, where r = n− k. Additions, denoted by ⊕, and multiplications
are operations of the field GF(2). Unless otherwise specified, all vectors
will be assumed to be column vectors. Let us introduce the following useful
notation. Suppose M is a matrix, and let J be an arbitrary subset of the set
of column indices in M. Then MJ will denote the matrix whose columns are
all the columns of M with indices in J , in the same order as they appear in

M. If M is a column vector, then
((

MT
)
J

)T
will be written simply as MJ .

Here T stands for the operation of the matrix transposition. If J = {j}, then
instead of M{j} it will be written Mj. For a binary vector u the weight of
u, i.e. the number of ones among its coordinates will be denoted by W (u).

Let E = [E1, E2, . . . , En]T denote the error–vector, i.e. the n–dimensional
binary random vector with pairwise independent coordinates, having the
probability distribution given by

P {Ei = 1} = pi, P {Ei = 0} = qi = 1− pi, 1 ≤ i ≤ n.

Let x ∈ C be arbitrary codeword. Then the vector Y = x ⊕ E is called
the received message, because it is formed from the codeword x by including
random errors. To decode a received message y, the realization of the random
variable Y, means to find a codeword x̂ ∈ C such that for every x′ ∈ C the
following inequality holds

P {E = x̂⊕ y} ≥ P {E = x′ ⊕ y} .
Symbol–by–symbol decoding method for linear codes [5] consists of com-

plementing those bits of the received message which have a posteriori proba-
bility of error greater than 1/2. It is often practically impossible to compute
exactly a posteriori probabilities of error (APPE), because they depend in
a very complicated way on all bits of the received message. The reasonable
solution to that problem is to compute the approximate values of the APPE,
using only a part of parity checks for every bit of the received message. After
that, one can replace the a priori probabilities of error by so computed APPE,
then to compute the new APPE, and so on (see for example [2, pp. 157], [4];
also [1]). Information set of the code C is any subset of k coordinates of a
codeword uniquely determining all other coordinates of the codeword. Using

2



a vector of APPE, one can randomly choose some number of highly reliable
information sets, (information sets such that the respective coordinates of
some APPE–vector are close to 0 or 1) and then to compute the codewords
defined by y and these information sets. If there are not many errors in
the received message, then all the computed codewords will be equal to the
codeword x̂. It is possible to correct all errors in the received message using
the APPE–vector.

A posteriori probabilities of error are the conditional probabilities

Pi = P
(
{Ei = 1} |

{
H(i)E = H(i)y

})
(1)

=
P
{
H(i)E = H(i)y, Ei = 1

}

P {H(i)E = H(i)y} , 1 ≤ i ≤ n.

The matrix H(i), 1 ≤ i ≤ n, with ri rows and n columns, has all ones in
the i–th column, and the space C is a subspace of the null–space of the
matrix H(i) (see for example [3]). It is possible to choose H(i) = H for all
i, 1 ≤ i ≤ n, but in that case the complexity of the computing of the APPE
might be inconveniently large.

We are going to describe a decoding algorithm for linear codes. Let
Fy : [0, 1]n → [0, 1]n be the function transforming the probability vector p
into the APPE–vector P,

Fy(p) = P.

Decoding algorithm under the consideration starts by computing some num-
ber g ≥ 1 of vectors from the sequence

{
P(j)

}
j≥1

given by the first member

P(0) = p and by the recurrent relation

P(j+1) = Fy

(
P(j)

)
.

The next step is to form the vector ȳ, corrected version of the received
message y,

ȳi =

{
yi, P

(g)
i ≤ 1/2

1⊕ yi, P (g)
i > 1/2

, 1 ≤ i ≤ n (2)

Under some conditions connected with the error–vector (which will not be
considered in this paper, see for example [1]) the vector ȳ is equal to x̂, or
at least some of its highly reliable coordinates, forming the information set,
are equal to the corresponding coordinates of the vector x̂. That means that

3



the vector ȳ can be taken as the result of decoding of the received message
y.

It is well known that the complexity of the computing the APPE grows
exponentially with the exponent min {ki, ri}. A method for reducing this
complexity using the equivalent, but smaller, parity check matrices is given
in Section 1. The method is generalization of the method used in [1]. In

computing the vectors
{
P(j)

}
1≤j≤g, a numerical problem may arise. Namely,

the coordinates of these vectors can get very close to 0 or 1, and consequently
they cannot be distinguished from that two values. In Section 2. a solution
will be given for this problem. The sequence of the algebraic value vectors is
computed instead of the APPE–vectors. In Section 3. is given an example.

1 A method for computing the APPE

In the equation (1) it can be supposed without loss of generality that 0 ≤
pi ≤ 1/2, for all i, 1 ≤ i ≤ n. That can be seen by the following reasoning.
Let E′ be a random binary vector given by E′ = E⊕ d, where

di =

{
0, pi ≤ 1/2
1, pi > 1/2

, 1 ≤ i ≤ n.

Then for all i, 1 ≤ i ≤ n, it is obviously P {E ′i = 1} = p′i ≤ 1/2. If the
vector y′ is defined by y′ = y ⊕ d, then the equalities H(i)E = H(i)y and
H(i)E′ = H(i)y′ are equivalent. Thus we have

P ′i = P
(
{E ′i = 1} |

{
H(i)E′ = H(i)y′

})

= P
(
{Ei ⊕ di = 1} |

{
H(i)E = H(i)y

})

=

{
Pi, pi ≤ 1/2
1− Pi, pi > 1/2

.

The set Ci of the binary vectors defined by Ci =
{
e ∈ Bn | H(i)e = 0(r)

}

(where B = {0, 1} and 0(r) denotes the r–dimensional vector with all coordi-
nates equal to zero) is a group under the operation ⊕. For arbitrary y ∈ Bn

the set Ci,y given by

Ci,y = Ci ⊕ y = {e⊕ y | e ∈ Ci} = {e | e⊕ y ∈ Ci}
=

{
e | e ∈ Bn,H(i)e = H(i)y

}

4



is a coset of the group Ci. Let Cu
i denote the set

Cu
i =

{
e ∈ Bn | H(i)e = 0(r), ei = u

}
, u ∈ B.

The set C0
i is a subgroup of the group Ci, and the set C1

i is its coset. Finally,
let

Cu
i,y = {e | e ∈ Ci,y, ei = u} , u ∈ B.

Then the equation (1) can be written in the following way

Pi =

∑
e∈C1

i,y
P {E = e}

∑
e∈Ci,y P {E = e}

=


1 +

∑
e∈C0

i,y

∏n
j=1 p

ej
j q

1−ej
j

∑
e∈C1

i,y

∏n
j=1 p

ej
j q

1−ej
j



−1

, 1 ≤ i ≤ n. (3)

To compute Pi by this equation, it is necessary to perform n2ki real multi-
plications (where ki = n− ri) because |Ci,y| = 2ki .

Obviously, the value of (3) does not depend on those probabilities pj
for which the corresponding column of the parity check matrix H(i) is a
zero vector, H

(i)
j = 0(r). The following theorem shows that the parity–check

matrix can be substituted by the equivalent, but smaller matrix.

Theorem 1 Let i be arbitrary fixed integer, 1 ≤ i ≤ n, and let the columns of
the parity–check matrix H(i) with the indices from the set I = {i1, i2, . . . , il}
are equal, where 1 ≤ i1 < i2 < · · · < il ≤ n, l ≥ 2, and i /∈ I. Denote by J the
complementary set J = {1, 2, . . . , n} \ I = {j1, j2, . . . , jn−l} , 1 ≤ j1 < j2 <

· · · < jn−l ≤ n. Let the binary random vector E′ =
[
E ′1 . . . E ′n−l E

′
n−l+1

]T

be defined by

E ′s = Ejs , 1 ≤ s ≤ n− l,
E ′n−l+1 = Ei1 ⊕ Ei2 ⊕ · · · ⊕ Eil . (4)

In the similar way, let the vector y′ =
[
y′1 . . . y′n−l y

′
n−l+1

]T
be defined by

y′s = yjs , 1 ≤ s ≤ n− l,
y′n−l+1 = yi1 ⊕ yi2 ⊕ · · · ⊕ yil ,

5



Denoting by H(i)′ the matrix whose columns are that of the matrix H(i) with
the indices {j1, j2, . . . , jn−l} and i1 in this order, APPE Pi can be expressed
by the equation

Pi =
P
(
{Ei = 1} |

{
H(i)′E′ = H(i)′y′

})

P
{
H(i)′E′ = H(i)′y′

} . (5)

Proof. Equality (5) follows from the obvious equalities H(i)E = H(i)′E′

and H(i)y = H(i)′y′ (they are the consequence of the assumption that the
columns of the matrix H(i) with the indices from the set I are equal). 2

Observe that the equation (5) is analogous to (1), with H(i),E, and y

substituted respectively by H(i)′,E′ and y′.
Equivalent probabilities of error are given by the known equality

P
{
E ′n−l+1 = 1

}
=

1

2
− 1

2

l∏

s=1

(1− 2pis) (6)

(see for example [1, Theorem 1]). Applying Theorem 1, the number of mul-
tiplications needed to compute the APPE can be reduced to n′i2

n′i−ri , where
n′i is the number of columns in the matrix formed from the matrix H(i) by
deleting all zero– and redundant (repeated) columns. A small number of mul-
tiplications needed to compute the equivalent probabilities of error by (6) is
neglected. Theorem 1 is a generalization of the statement used in [1], which
claims that the redundant columns with exactly one “1” can be deleted from
the parity check matrix. In the special case when the matrix H(i) defines
the set of orthogonal parity checks, i.e. when all the columns except the
i–th contain exactly one “1”, we have ni = 1 + ri, and so the number of
multiplications needed in (5) is only 2(1 + ri). This is a known result, see for
example [3].

To achieve more efficient decoding algorithm it is necessary for the number
ri of the independent parity checks (given by the matrix H(i), 1 ≤ i ≤ n) to
be as large as possible. But in that case it is possible (by use of Theorem 1)
to compute the APPE only if the matrices H(i) have large number of zero–
or redundant columns. For every group of redundant columns it is necessary
to apply once the equality (6). During the calculation of the sequence of
the APPE–vectors, the following problem arises: APPE usually gets close
to 0 or 1, and thus it lowers the exactness of the computation. For small

6



value of max {pis | 1 ≤ s ≤ l} , it is impossible to compute the probability

P
{
E ′n−l+1 = 1

}
directly by the equation (6). In the following section the

method to solve this problem will be given.

2 On the exactness of computing of the APPE

To solve the problem of computing with the probabilities which are very
close to 0 or 1, it is useful to transform the probabilities pi and Pi into the
corresponding algebraic values ai and Ai, given by

ai = ln
1− pi
pi

, Ai = ln
1− Pi
Pi

, 0 < pi, Pi < 1, 1 ≤ i ≤ n.

These transformations are usually used to simplify the expressions like (6)
(see for example [3]). Here it will be shown how the a posteriori algebraic
values Ai can be computed in the case when some of the probabilities pi
are very close to 0, and therefore they cannot be computed by the use of
computers in the standard precision. Probabilities which are close to 1 are
transformed according to the note from the beginning of the previous section.

Writing the equality (3) as

Pi =


1 +

∑
e∈C0

i,y
exp

(
−∑n

j=1 aj
)

∑
e∈C1

i,y
exp

(
−∑n

j=1 aj
)


−1

, 1 ≤ i ≤ n,

we get

Ai = ln

∑
e∈C0

i,y
exp

(
−∑n

j=1 aj
)

∑
e∈C1

i,y
exp

(
−∑n

j=1 aj
) , 1 ≤ i ≤ n.

Here the outher sums are computed dividing all the summands by the small-
est among them. Let us denote the algebraic value corresponding to P

{
E ′n−l+1 = 1

}

(see (4) and (6) by A′n−l+1. If we suppose that max {pis | 1 ≤ s ≤ l} < 1/2,
i.e. min {ais | 1 ≤ s ≤ l} > 0, then the equation (6) can be written as

A′n−l+1 = ln
1 +

∏l
s=1 (1− 2pis)

1−∏l
s=1 (1− 2pis)

= ln

∏l
s=1 (1− pis + pis) +

∏l
s=1 (1− pis − pis)∏l

s=1 (1− pis + pis)−
∏l
s=1 (1− pis − pis)

7



= ln

∏l
s=1 (eais + 1) +

∏l
s=1 (eais − 1)

∏l
s=1 (eais + 1)−∏l

s=1 (eais − 1)

= f

(
l∑

s=1

f (ais)

)
, (7)

where f : (0,+∞)→ (0,+∞) is the function defined by the equality

f(z) = ln
ez + 1

ez − 1
, z > 0. (8)

In the case when max {pis | 1 ≤ s ≤ l} = 1/2, i.e. min {ais | 1 ≤ s ≤ l} = 0,

it is natural to take A′n−l+1 = 0, because P
{
E ′n−l+1 = 1

}
= 1/2.

Values of the function f(z) for large z cannot be computed by use of
computers in the standard precision because the argument of ln cannot be
distinguished from 1. Similarly, for the values of z close to zero f(z) cannot
be computed because the number ez − 1 is rounded to zero, by reason of the
limitations for the number of bits for the mantissa of real numbers. However
the function f̂(z) which is defined in Theorem 2 can be computed for z close
to zero and large z, and it is a good approximation of the function f(z). The
argument of the outher f in (7) is computed dividing all the summands by
exp (−max {ais | 1 ≤ s ≤ l}). Let ρ denote the relative rounding error for
real numbers caused by their representation in the computer. One can take
2−56 ' 1.39× 10−17 as the typical value for ρ.

Theorem 2 Let the relative rounding error ρ satisfy the condition ρ ≤ 2−56.
Define the function f̂(z), z > 0 by the following equation

f̂(z) =





2e−z, z0 ≤ z < +∞
2e−z + 2

3
e−3z, z1 ≤ z < z0

ln ez+1
ez−1

, z2 ≤ z < z1

ln 2
z

+ 1
12
z2, z3 ≤ z < z2

ln 2
z
, 0 < z < z3

, (9)

where z0 = 1
3

ln c
10ρ
, z1 = 1

5
ln 3c

25ρ
, z2 = (48ρ)1/3, z3 = 6ρ and c = 2

3(1−e−2)
'

0.771. Then
1

z
|f(z)− f̂(z)| < ρ. (10)

8



Proof. Let us consider first the case z > z0 = 1
3

ln c
10ρ

> 12.1. Using the
Taylor expansion

ln
1 + w

1− w = 2
∞∑

k=1

1

2k − 1
w2k−1, w < 1, (11)

we get the inequalities

2w ≤ ln
1 + w

1− w < 2w +
2

3

∞∑

k=2

w2k−1 = 2w +
2

3

w3

1− w2

< 2w +
2

3 (1− e−2)
w3 = 2w + cw3.

Substituting here w by e−z < 1, we get

1

z
| ln e

z + 1

ez − 1
− 2e−z| < c

z
e−3z <

c

10
e−3z < ρ, z > z0,

which proves (10) in the case z > z0. In the analogous way, taking the two
first members of the expansion (11), we get the inequalities

2w +
2

3
w3 ≤ ln

1 + w

1− w ≤ 2w +
2

3
w3 +

3

5
cw5,

and consequently, for z > z1 we have

1

z
| ln e

z + 1

ez − 1
− 2e−z − 2

3
e−3z| < 3

5

c

z
e−5z <

3c

25
e−5z < ρ.

This ends the proof of (10) for the case z1 ≤ z < z0.
The case when z is small, z < z2, is more complicated. Consider the

following Taylor expansion of the function ϕ(z) = f(z)− ln
(

2
z

)
,

ϕ(z) = ln
(
ez + 1

ez − 1

z

2

)
=
z2

12
+
ϕIV (θz)

4!
z4, 0 < θ < 1. (12)

We will find the lower and upper bound for ϕIV (z) when 0 < z < 0.01.
These will be also the bounds for ϕIV (θz), because 0 < z < 0.01 implies
0 < θz < 0.01. Expression for f(z) can be written as

ϕ(z) = ϕ1(z) + ϕ2(z), (13)

9



where

ϕ1(z) = ln
ez + 1

2
,

and
ϕ2(z) = ln

z

ez − 1
,

The fourth derivative of the function ϕ1(z) is

ϕIV1 (z) =
1

1 + e−z
− 7

(1 + e−z)2 +
12

(1 + e−z)3 −
6

(1 + e−z)4 .

Starting from the inequality

1

2
≤ 1

1 + e−z
<

1

1 + e−0.01
= c′ ' 0.5025

the following bounds for ϕ1(z) are obvious

−0.150 ' 2− 7c′2 − 6c′4 < ϕIV1 (z) < c′ + 12c′3 − 17

8
' −0.0999,

and consequently
|ϕIV1 (z)| < 0.2, 0 < z < 0.01. (14)

The fourth derivative ϕIV2 (z) can be written as

ϕIV2 (z) = ϕ3(t)
(
t

z

)4

, (15)

where t = 1− e−z and

ϕ3(t) =
(ln(1− t))4 (6− 12t+ 7t2 − t3)− 6t4

t8
. (16)

Variable t for 0 < z ≤ z2 obviously satisfies the inequalities 0 ≤ t < 1 −
e−0.01 < 0.01. To estimate |ϕ3(t)|, we need the Taylor expansion

− ln(1− t) = t+
t2

2
+
t3

3
+
t4

4
+
U

5
t5,

10



where U = (1− θ1t)
−5 , 0 < θ1 < 1, and 1 ≤ U < (1 − t)−5 = e5z < e0.05 '

1.0513. Substituting this in (16), we get the expression for ϕ3(t) in terms of
t and U ,

ϕ3(t) = − 115

24
+

24

5
U

+ t
(
−19

12
− 12

5
U
)

+ t2
(
−145

144
− 2

5
U
)

+ t3
(
−35

48
− 1

5
U
)

+ t4
(

125

144
− 3U +

36

25
U2
)

+ t5
(

35

72
+

2

5
U − 36

25
U2
)

+ t6
(

959

2592
+

2

45
U +

3

25
U2
)

+ t7
(

775

2592
+

1

90
U
)

+ t8
(

205

3456
+

31

54
U − 29

50
U2 +

24

125
U3
)

+ t9
(

5

192
+

47

540
U +

19

50
U2 − 36

125
U3
)

+ t10
(

5

768
+

7

120
U +

1

60
U2 +

12

125
U3
)

+ t11
(
− 1

256
+

3

80
U +

1

75
U2
)

+ t12
(
− 1

80
U +

13

200
U2 − 14

375
U3 +

6

625
U4
)

+ t13
(
− 3

200
U2 +

17

375
U3 − 12

625
U4
)

+ t14
(
− 1

125
U3 − 7

625
U4
)

+ t15
(
− 1

625
U4
)

The absolute values of the coefficients of t2, t3, . . . , t15 in this expansion are

11



obviously smaller than 15 for 0 < z < 0.01. This fact allows us to estimate
the upper bound for |ϕ3(t)|:

|ϕ3(t)| ≤ | − 115

24
+

24

5
e0.05|+ t

(
19

12
+

12

5
e0.05

)
+ 15

(
t2 + · · ·+ t15

)

≤ 0.255 + 4.16t+ 15t2
1− t14

1− t
≤ 0.255 + 0.0416 + 30t2 < 0.3

Using this inequality, (15), and the inequality t < z, we conclude that
|ϕIV2 (z)| < 0.3 for 0 < z < 0.01, and finally, from (13) and (14),

|ϕIV (z)| < 0.5, 0 < z < 0.01.

Consider now the case 0 < z < z2 = (48ρ)1/3. We have, see (12),

1

z
| ln e

z + 1

ez − 1
− ln

2

z
− z2

12
| = |ϕIV (θz)

z3

24
| < z3

48
< ρ.

Finally, for 0 < z < z3, the following inequality can be derived

1

z
| ln e

z + 1

ez − 1
− ln

2

z
| = | z

12
+ ϕIV (θz)

z3

24
| ≤ z

12
+
z3

48
<
z

6
< ρ.

This completes the proof of Theorem 2. 2

In determining the expansion of ϕ3(z) we used symbolic programming
language “MUSIMP”. For ρ = 2−56 parameters in (9) have the following
values: z0 ' 12.1, z1 ' 7.29, z2 ' 8.733× 10−6 and z3 ' 8.33× 10−17.

3 An example

The following example illustrates the use of f̂(z).
Consider the linear (192, 13) code defined by the following set of parity

check equations

xi ⊕ xi+1 ⊕ xi+4 ⊕ xi+6 ⊕ xi+13 = 0, 1 ≤ i ≤ 179,

where x is an arbitrary codeword. Starting from these relations the parity
check matrix H can easily be written. Suppose that the received message is

12



bounds for i
parity check lower upper

1 xi ⊕ xi+1 ⊕ xi+4 ⊕ xi+6 ⊕ xi+13 = 0 1 179
2 xi ⊕ xi+2 ⊕ xi+8 ⊕ xi+12 ⊕ xi+26 = 0 1 166
3 xi−1 ⊕ xi ⊕ xi+3 ⊕ xi+5 ⊕ xi+12 = 0 2 180
4 xi−2 ⊕ xi ⊕ xi+6 ⊕ xi+10 ⊕ xi+24 = 0 3 168
5 xi−4 ⊕ xi−3 ⊕ xi ⊕ xi+2 ⊕ xi+9 = 0 5 183
6 xi−8 ⊕ xi−6 ⊕ xi ⊕ xi+4 ⊕ xi+18 = 0 9 174
7 xi−6 ⊕ xi−5 ⊕ xi−2 ⊕ xi ⊕ xi+7 = 0 7 185
8 xi−12 ⊕ xi−10 ⊕ xi−4 ⊕ xi ⊕ xi+14 = 0 13 178
9 xi−13 ⊕ xi−12 ⊕ xi−9 ⊕ xi−7 ⊕ xi = 0 14 192
10 xi−26 ⊕ xi−24 ⊕ xi−18 ⊕ xi−14 ⊕ xi = 0 27 192

Table 1: Description of the structure of the parity check matrices H(i), 1 ≤
i ≤ n in the example

the vector

y = [ 1100011010010111000001010001111011111100

0101100010011011111111100000000100001111

0100110111001010010101011100111000001000

1001010011001110000110000001100110111111

00001101111011001101000101100111 ]T

Coordinates of all codewords satisfy also the following family of parity check
relations

xi ⊕ xi+2 ⊕ xi+8 ⊕ xi+12 ⊕ xi+26 = 0, 1 ≤ i ≤ 166.

One of the possible set of parity check matrices H(i), 1 ≤ i ≤ n = 192 can
be described by the Table 1 (the similar construction was used in [4]). For
every i, 1 ≤ i ≤ n, the matrix H(i) is formed from that parity check relations
(second column of the Table 1) for which the respective integer segment (with
boundaries given in third and fourth columns) contains i.

In the Table 2 there were listed parameters connected with the matrices
H(i): the number of rows ri, the number of non–zero columns ni, the number
of non–zero columns after the application of Theorem 1, n′i, and the numbers
ki = ni − ri, k

′
i = n′i − ri, 1 ≤ i ≤ n. It can be seen that the size of the

13



lower upper
limit for i ri ni ki n′i k′i

1 1 1 2 9 7 3 1
2 2 2 3 12 9 5 2
3 3 4 4 15 11 7 3
4 5 6 5 18 13 9 4
5 7 8 6 21 15 11 5
6 9 12 7 23 16 14 7
7 13 13 8 26 18 16 8
9 14 26 9 29 20 18 9
9 27 166 10 33 23 19 9
10 167 168 9 31 22 16 7
11 169 174 8 29 21 13 5
12 175 178 7 27 20 10 3
13 179 179 6 25 19 7 1
14 180 180 5 21 16 6 1
15 181 183 4 17 13 5 1
16 184 185 3 13 10 4 1
17 186 192 2 9 7 3 1

Table 2: Parameters connected with matrices H(i)

matrix H(i)′ is significantly smaller than the size of the matrix H(i), for the
most values of i. Still, this fact does not improve considerably the efficiency
of the computation, because ri ' k′i.

The information sets were formed from the set of 40 coordinates with the
lowest values of min

{
P

(8)
i , 1− P (8)

i

}
, 1 ≤ i ≤ n. Using Theorem 2 and doing

the calculations with the algebraic values, the following set of 40 coordinates
was obtained

{ 155, 165, 161, 159, 153, 167, 160, 156, 162, 157,
166, 164, 168, 163, 154, 158, 169, 105, 152, 172,
171, 170, 117, 149, 174, 148, 150, 143, 173, 146,
93, 75, 176, 151, 142, 89, 91, 79, 77, 81, }

Comparing the corresponding coordinates in the vectors x

x = [ 0001011010001111100001000100111011011100

14



0100110110011011010011100101010100010111

0101110011011000111101101101111000001000

0000010011001011100110000001100101111111

00011101101111001001000101000111 ]T

and ȳ (formed using the vector P(8), see (2)), it can be seen that there is
only one error in ȳ among these 40 coordinates.

Corresponding set of 40 coordinates formed without using Theorem 2 is

{ 1, 2, 4, 5, 6, 7, 10, 11, 12, 13,
14, 15, 16, 17, 18, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 32, 33, 34, 36,
37, 38, 39, 41, 42, 43, 44, 45, 46, 47, }

In this case there are even 17 errors in these coordinates of the vector ȳ. The
difference between these two cases can also be illustrated by the following
experiment. After each iteration j, j = 1, 2, . . . , 10, (computation of the
vector P(j), i.e. A(j)) there were formed 10 random information sets starting
from the 40 most reliable coordinates. The number of the information sets
without errors (i.e. the number of successful decodings) was respectively
4, 6, 0, 0, 1, 2, 4, 10, 10, 10 for the improved method, and 4, 6, 0, 0, 0, 0, 0, 0, 0, 0
for the usual method of computing the APPE.

Acknowledgement

Author wishes to express his gratitude to professor Ž. Mijajlović for useful
remarks.

References

[1] R. G. Gallager, “Low–Density Parity–Check Codes”, IEEE Trans. on
Inform. Theory, vol. IT–8, pp. 21–28, Jan. 1962.

[2] G. C. Clark, Jr. and J. B. Cain, Error–Correction Coding for Digital
Communications, New York: Plenum Press, 1982.

15



[3] G. Battail, M. C. Decouvelaere and P. Godlewski, “Replication Decod-
ing”, IEEE Trans. Inform. Theory, vol. IT–25, pp. 332–345, May 1979.

[4] W. Meier and O. Staffelbach, “Fast Correlation Attacks on Stream Ci-
phers”, in Advances in Cryptology, Eurocrypt’88, C. G. Günter, Ed.,
Berlin: Springer, 1988, pp. 300–314.

[5] C. R. P. Hartmann and L. D. Rudolph, “An Optimum Symbol–by–
Symbol Decoding Rule for Linear Codes”, IEEE Trans. Inform. Theory,
vol. IT–22, pp. 514–517, Sep. 1976.

16


