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Abstract

An algorithm is given for the reconstruction of the initial state of a
key–stream generator (KSG) consisting of a short linear feedback shift
register (length ≤ 30), whose clock is controlled by an algebraically
simple internal KSG. The algorithm is based on the fact that the ex-
pected number of possible LFSR initial states exponentially decreases
with the length of the known part of the output sequence.

Index Terms — Clock–controlled FSR (feedback shift register),
Levenshtein distance.
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Denote by G the key–stream generator (KSG), consisting of an internal
KSG G0, and a binary linear feedback shift–register (LFSR), whose clock is
controlled by G0, see [1], [2]. In this paper the problem of determining the
initial state of KSG G, given its output sequence, is considered. Denote the
binary output sequences of KSG G0, LFSR, and KSG G by a1, a2, . . . , an, . . . ;
b1, b2, . . . , bn, . . . and c1, c2, . . . , cn, . . ., respectively. The output sequence of
the LFSR is defined by the values b1, b2, . . . , bk, and by the recurrence relation

bn =
k⊕

i=1

hibn−i, n > k, (1)

of order k over the field GF(2). Here k is the length of the LFSR, and
h1, h2, . . . , hk ∈ GF(2) are its feedback coefficients. The output sequence
from G is obtained by the decimation of the output sequence from the LFSR,

cn = brn , n ≥ 1, (2)

where rn = n+
∑n
i=1 ai, n ≥ 1, or equivalently

rn+1 = rn + 1 + an+1, n ≥ 1. (3)

The general case is very complicated, so we start with the following as-
sumptions:

• the first N members c1, c2, . . . , cN of the output sequence from G are
known, N > 0;

• the length of the LFSR is not too large (for example k ≤ 30);

• knowing K > 0 arbitrary members of the sequence a1, a2, . . . , an, . . . ,
one can effectively determine the initial state ofG0 (G0 could be another
LFSR, for example).

The main part of the reconstruction algorithm is to find the actual posi-
tions of some output bits over a period of the LFSR output sequence. For
that reason we first define an embedding relation between binary vectors.

Definition 1 Suppose b
˜

= (b1, b2, . . . , bB) and c
˜

= (c1, c2, . . . , cN) are

binary vectors of length B and N respectively, B,N > 0. We say that c
˜
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can be embedded into b
˜

if there exist integers z0 = 0, z1, . . . , zN such that

ci = bzi , zi − zi−1 ∈ {1, 2}, 1 ≤ i ≤ N.

If zN = B then c
˜

can be embedded onto b
˜

.

Obviously, c
˜

can be embedded into b
˜

if the sequence starting with

c
˜

, can be obtained by decimating the sequence starting with b
˜

under

the control of the sequence z0, z1, . . . . The following theorem describes the
behavior of the probability that the fixed vector can be embedded into a
random binary vector, when the lengths of these vectors grow.

Theorem 1 Let c
˜

= (c1, c2, . . . , cN) be an arbitrary binary vector of length

N , and let B
˜

= (B1, B2, . . . , B2N) be an 2N–dimensional binary random

variable with independent coordinates and uniform probability distribution.
If P

N, c
˜

denotes the probability that vector c
˜

can be embedded into the

random vector B
˜

and PN = min
c
˜

P
N, c

˜

, then there exist α, β > 0,

α < 1, such that
PN < βαN . 2 (4)

Proof. Our goal is to find an upper bound for the number of different
vectors of length 2N into which the vector c

˜
can be embedded. Suppose

N = mM , where m and M are integers. For 0 ≤ l ≤ m denote by Um,l the
maximum number of different vectors of length m+ l into which an arbitrary
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m 0 1 2 3 4 5 6 7 αm −1/ log2 αm pm

2 1 3 4 0.9354143 10.3817861 0.0123972
3 1 4 8 8 0.9085603 7.2282625 0.0194109
4 1 5 13 20 16 0.8946455 6.2261849 0.0235022
5 1 6 19 38 48 32 0.8862936 5.7423940 0.0260349
6 1 7 26 63 104 112 64 0.8807541 5.4588471 0.0277883
7 1 8 34 96 192 272 256 128 0.8768163 5.2727731 0.0291521

Table 1: Quantities Ul,m, αm and pm for 2 ≤ m ≤ 7

m–tuple can be embedded by inserting l bits (at most one after each member
of the m–tuple). The numbers Um,l are given in Table 1 for 2 ≤ m ≤ 7. The
complexity of computing the numbers Um,l, 0 ≤ l ≤ m, by direct counting

is O
(∑m

l=0 2m+l
(
m
l

))
= O(6m). In Table 1 the numbers αm and pm are also

given, where

αm =
1

2

(
m∑

l=0

Um,l2
−l
)1/m

, (5)

and pm is the largest p from [0, 1/2) such that

H(p) = −p log2 p− (1− p) log2(1− p) ≤ − log2 αm.

For m ≥ 2 we have U0,m = 1 and Um,m = 2m. From the obvious inequality

Um,l ≤
(
m

l

)
2l, 0 ≤ l ≤ m, (6)

and the equality Um,1 = m+1 (which can be proved easily) it follows αm < 1,
because in (6) for l = 1 the strict inequality holds.

Consider the set Φ( c
˜

) of vectors of length 2N into which c
˜

can be

embedded. Obviously, b
˜
∈ Φ( c

˜
) if, and only if, b

˜
can be partitioned

into M + 1 parts, so that for 1 ≤ i ≤M the vector c
˜

i
= (cmi−m+1, . . . , cmi)

can be embedded onto i-th part of b
˜
. Suppose that we have fixed the
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number of insertions into c
˜

i
, 1 ≤ i ≤ M , and that Il is the number of

m–tuples c
˜

i
with l insertions, 0 ≤ l ≤ m. Then the number of such vectors

b
˜

is at most

(
m∏

l=0

U Il
l

)
exp2

(
2N −

m∑

l=0

(m+ l)Il

)
= 2N

m∏

l=0

(
Ul2
−l)Il ,

because
∑m
l=0 Il = M and the last 2N −∑m

l=0(m + l)Il bits of b
˜

can take

the values from the set {0, 1} independently. For the fixed I0, I1, . . . , Il we
have M !/(I0!I1! · · · Il!) possibilities to chose the numbers of inserted bits into

the m–tuples c
˜

i
, 1 ≤ i ≤M . Summing over the partitions set of M ,

{
(I0, I1, . . . , Il) | I0, I1, . . . , Il ≥ 0,

m∑

l=0

Il = M

}
,

we get the upper bound on the cardinal number of Φ( c
˜

),

| Φ( c
˜

) |≤ 2N
∑ M !

I0!I1! · · · Il!
m∏

l=0

(
Ul2
−l)Il = 22NαNm,

and therefore (for N = mM) PN ≤ αNm. If c
˜

′
is the vector obtained by

inserting an arbitrary bit at the beginning of c
˜

, then

| Φ( c
˜

′
) |≤ 4 | Φ( c

˜
) |≤ 22N+2PN ,
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which implies PN+1 ≤ PN . Combining this inequality with the previous one,
we get the inequality PN ≤ αm[N/m]

m ≤ αN−m+1
m , which is equivalent to (4)

if α = αm and β = α1−m
m , m ≥ 2. Here [x] denotes the largest integer not

greater than x. The values of αm, 2 ≤ m ≤ 7 can be found in Table 1. As
they are decreasing with m (at least for m ≤ 7), asymptotically best upper
bound for PN (if we restrict ourselves to the values of αm from Table 1) is
obtained for m = 7, PN ≤ 0.87687[N/7]. 2

The algorithm for determining the initial state of KSG G is based on the
idea of finding sub–vectors over a period of the LFSR output sequence, into
which the vectors (ci, ci+1, . . . , cN), 1 ≤ i < N, can be embedded. As usual,
δi,j denotes the Kronecker symbol,

δi,j =

{
1, i = j
0, i 6= j

.

Algorithm 1 The reconstruction of the initial state of the KSG G, given
the part c

˜
= (c1, c2, . . . , cN) of its output sequence.

1. Let B = P + N , where P denotes the period of the LFSR output se-
quence (we assume that the LFSR generates the maximum length sequence;
in other cases every cycle of the output sequence must be considered sepa-
rately). Calculate the vector b

˜
= (b1, b2, . . . , bB), the part of the LFSR

output sequence, where b1 = b2 = · · · = bk = 1, see (1).
2. Set i← N, t← 0, and for 1 ≤ j ≤ B set

pj ← δcN ,bj

(vector p
˜

contains the information on the possible positions of ci in b
˜

; i

and t are counters).
3. [Decrement i.] Set i← i− 1; if i = 0 then go to 7.
4. For 1 ≤ j ≤ B if

ci = bj and ((j + 1 ≤ B and pj+1 = 1) or (j + 2 ≤ B and pj+2 = 1))
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then set qj ← 1, otherwise set qj ← 0 (vector q
˜

contains the information

on the possible positions of ci in b
˜

).

5. [Is exactly one coordinate of q
˜

equal to 1?] If
∑B
i=1 qj = 1 and qs = 1

then set t ← t + 1, ut ← i and vt ← s (in that case the bit ci is obtained
from the member bs of the output sequence from G and ri = s, see (2)).

6. For 1 ≤ j ≤ B set pj ← qj and go to 3.
7. For every pair (j, j + 1), 1 ≤ j < t, such that uj = t and uj+1 = t+ 1,

compute at+1 = vj+1 − vj − 1, the member of the output sequence from G0,
see (3). If the number of such pairs is large enough, determine the initial state
of G0 (solving the appropriate set of equations, which is not hard, according
to our assumptions).

8. Knowing the initial state of G0, determine the initial state of the LFSR
by solving the system of linear equations. There is also another possibility:
the initial state of the LFSR is determined by the k subsequent bits from
b
˜

, starting from some place where the corresponding coordinate of p
˜

is

1. According to Theorem 1, the number of such places is small if N is large
enough.

The main part of this algorithm is similar to the algorithm for computing
the constrained Levenshtein distance [3, pp 286] between the vectors c

˜
and

b
˜

. Transforming the string c
˜

into the string b
˜

, deletions, alterations

and two subsequent insertions are not allowed, with the exception of an
arbitrary number of insertions at the beginning and at the end of c

˜
.

By induction over i, i = N,N − 1, . . . , 1, it can be proved that in the
(N− i+1)–th step we have q(t) = 1 if, and only if, the sequence (ci, ci+1, . . .)
can be embedded into (bt, bt+1, . . . , bB) with no insertions at the beginning.
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According to Theorem 1, the probability of “placing” the sequence c
˜

in

wrong places inside the sequence b
˜

is small for N large enough.

Using Theorem 1 it is possible to estimate the necessary length N of
the output sequence. The probability that c

˜
cannot be embedded in any

(wrong) position over a period of the LFSR output sequence is lower–bounded
approximately (if we neglect the dependence between the possible embed-

dings) by
(
1− βαN

)K/2
, where K = 2k. If βαN×K/2� 1, then this bound

is greater than 1/2 if approximately N > −(k+β)/log2 α ' −k/log2 α. Note
that this inequality implies that the previous assumption is satisfied. For
α = α7 we get the condition n > 5.3k, see Table 1. Thus, for the recon-
struction of the LFSR initial state we need the output sequence which is
approximately 5 times longer than the LFSR. Of course, it might be neces-
sary to have a longer part of the output sequence to determine the initial
state of G0.

The main limitation of Algorithm 1 arises from its numerical complexity,
which is of order N2k. The reconstruction problem cannot be solved effec-
tively by Algorithm 1 if the length k of the LFSR is greater than 30, for
example.

Theorem 1 can be extended to the more complicated statistical model of
the KSG, obtained by adding modulo 2 the independent noise of probability
p, p < 1/2, to the output of G. Then we can consider the string c

˜

′
, obtained

from the string c
˜

by inserting independent errors with probability p. The

number of such strings (they differ from c
˜

in approximately pN places) is

upper–bounded approximately by 2NH(p). The number of different vectors of
length 2N into which some corrupted versions of c

˜
can be embedded is not
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greater than

2NH(p)22NβαN = β exp2 (N(2 +H(p) + log2 α)) ,

and the probability to pick at random some of them is bounded approxi-
mately by β exp2 (N(H(p) + log2 α)). This probability tends to zero when
N →∞ only if H(p) < − log2 α, or p < 0.0292 for α = α7. In that case it is
possible to reduce the number of solutions for the initial state of the LFSR,
but there still remains the problem of effectively determining the initial states
of other parts of the KSG.
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