
Chapter 1 

Introduction and Preview 

This “first and last lecture” chapter goes backwards and forwards 
through information theory and its naturally related ideas. The full 
definitions and study of the subject begin in Chapter 2. 

Information theory answers two fundamental questions in 
communication theory: what is the ultimate data compression (answer: 
the entropy H), and what is the ultimate transmission rate of 
communication (answer: the channel capacity C). For this reason some 
consider information theory to be a subset of communication theory. We 
will argue that it is much more. Indeed, it has fundamental 
contributions to make in statistical physics (thermodynamics), computer 
science (Kolmogorov complexity or algorithmic complexity), statistical 
inference (Occam’s Razor: “The simplest explanation is best”) and to 
probability and statistics (error rates for optimal hypothesis testing and 
estimation). 

Figure 1.1 illustrates the relationship of information theory to other 
fields. As the figure suggests, information theory intersects physics 
(statistical mechanics), mathematics (probability theory), electrical en- 
gineering (communication theory) and computer science (algorithmic 
complexity). We now describe the areas of intersection in greater detail: 

Electrical Engineering (Communication Theory). In the early 
194Os, it was thought that increasing the transmission rate of 
information over a communication channel increased the probability of 
error. Shannon surprised the communication theory community by 
proving that this was not true as long as the communication rate was 
below channel capacity. The capacity can be simply computed from the 
noise characteristics of the channel. Shannon further argued that 
random processes such as music and speech have an irreducible 
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Figure 1.1. The relationship of information theory with other fields. 

complexity below which the signal cannot be compressed. This he named 
the entropy, in deference to the parallel use of this word in 
thermodynamics, and argued that if the entropy of the source is less 
than the capacity of the channel, then asymptotically error free 
communication can be achieved. 

Information theory today represents the extreme points of the set of 
all possible communication schemes, as shown in the fanciful Figure 1.2. 
The data compression minimum 1(X; X) lies at one extreme of the set of 
communication ideas. All data compression schemes require description 
rates at least equal to this minimum. At the other extreme is the data 
transmission maximum 1(X; Y), known as the channel capacity. Thus all 
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min ~~~~~~ 

Figure 1.2. Information theoretic extreme points of communication theory. 
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modulation schemes and data compression schemes lie between these 
limits. 

Information theory also suggests means of achieving these ultimate 
limits of communication. However, these theoretically optimal communi- 
cation schemes, beautiful as they are, may turn out to be computational- 
ly impractical. It is only because of the computational feasibility of 
simple modulation and demodulation schemes that we use them rather 
than the random coding and nearest neighbor decoding rule suggested 
by Shannon’s proof of the channel capacity theorem. Progress in integ- 
rated circuits and code design has enabled us to reap some of the gains 
suggested by Shannon’s theory. A good example of an application of the 
ideas of information theory is the use of error correcting codes on 
compact discs. 

Modern work on the communication aspects of information theory has 
concentrated on network information theory: the theory of the simulta- 
neous rates of communication from many senders to many receivers in a 
communication network. Some of the trade-offs of rates between senders 
and receivers are unexpected, and all have a certain mathematical 
simplicity. A unifying theory, however, remains to be found. 

Computer Science (Kolmogorov Complexity). Kolmogorov, Chaitin 
and Solomonoff put forth the idea that the complexity of a string of data 
can be defined by the length of the shortest binary program for 
computing the string. Thus the complexity is the minimal description 
length. This definition of complexity turns out to be universal, that is, 
computer independent, and is of fundamental importance. Thus 
Kolmogorov complexity lays the foundation for the theory of descriptive 
complexity. Gratifyingly, the Kolmogorov complexity K is approximately 
equal to the Shannon entropy H if the sequence is drawn at random 
from a distribution that has entropy H. So the tie-in between 
information theory and Kolmogorov complexity is perfect. Indeed, we 
consider Kolmogorov complexity to be more fundamental than Shannon 
entropy. It is the ultimate data compression and leads to a logically 
consistent procedure for inference. 

There is a pleasing complementary relationship between algorithmic 
complexity and computational complexity. One can think about compu- 
tational complexity (time complexity) and Kolmogorov complexity (pro- 
gram length or descriptive complexity) as two axes corresponding to 
program running time and program length. Kolmogorov complexity 
focuses on minimizing along the second axis, and computational com- 
plexity focuses on minimizing along the first axis. Little work has been 
done on the simultaneous minimization of the two. 

Physics (Thermodynamics). Statistical mechanics is the birthplace 
of entropy and the second law of thermodynamics. Entropy always 
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increases. Among other things, the second law allows one to dismiss any 
claims to perpetual motion machines. We briefly discuss the second law 
in Chapter 2. 

Mathematics (Probability Theory and Statistics). The fundamen- 
tal quantities of information theory-entropy, relative entropy and 
mutual information-are defined as functionals of probability 
distributions. In turn, they characterize the behavior of long sequences 
of random variables and allow us to estimate the probabilities of rare 
events (large deviation theory) and to find the best error exponent in 
hypothesis tests. 

Philosophy of Science (Occam’s Razor). William of Occam said 
“Causes shall not be multiplied beyond necessity,” or to paraphrase it, 
“The simplest explanation is best”. Solomonoff, and later Chaitin, argue 
persuasively that one gets a universally good prediction procedure if one 
takes a weighted combination of all programs that explain the data and 
observes what they print next. Moreover, this inference will work in 
many problems not handled by statistics. For example, this procedure 
will eventually predict the subsequent digits of r. When this procedure 
is applied to coin flips that come up heads with probability 0.7, this too 
will be inferred. When applied to the stock market, the procedure should 
essentially find all the “laws” of the stock market and extrapolate them 
optimally. In principle, such a procedure would have found Newton’s 
laws of physics. Of course, such inference is highly impractical, because 
weeding out all computer programs that fail to generate existing data 
will take impossibly long. We would predict what happens tomorrow a 
hundred years from now. 

Economics (Investment). Repeated investment in a stationary stock 
market results in an exponential growth of wealth. The growth rate of 
the wealth (called the doubling rate) is a dual of the entropy rate of the 
stock market. The parallels between the theory of optimal investment in 
the stock market and information theory are striking. We develop the 
theory of investment to explore this duality. 

Computation vs. Communication. As we build larger computers out 
of smaller components, we encounter both a computation limit and a 
communication limit. Computation is communication limited and 
communication is computation limited. These become intertwined, and 
thus all of the developments in communication theory via information 
theory should have a direct impact on the theory of computation. 
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1.1 PREVIEW OF THE BOOK 

The initial questions treated by information theory were in the areas of 
data compression and transmission. The answers are quantities like 
entropy and mutual information, which are functions of the probability 
distributions that underlie the process of communication. A few 
definitions will aid the initial discussion. We repeat these definitions in 
Chapter 2. 

The entropy of a random variable X with a probability mass function 
p(x) is defined by 

H(X) = - c p(x) log, PW ’ (1.1) 

We will use logarithms to base 2. The entropy will then be measured in 
bits. The entropy is a measure of the average uncertainty in the random 
variable. It is the number of bits on the average required to describe the 
random variable. 

Example 1.1. I: Consider a random variable which has a uniform 
distribution over 32 outcomes. To identify an outcome, we need a label 
that takes on 32 different values. Thus 5-bit strings suffice as labels. 

The entropy of this random variable is 

32 1 1 
H(X)= - 2 p(i)logp(i)= - ST1 32 log32 =log32=5 bits, (1.2) 

i=l 

which agrees with the number of bits needed to describe X. In this case, 
all the outcomes have representations of the same length. 

Now consider an example with a non-uniform distribution. 

Example 1.1.2: Suppose we have a horse race with eight horses taking 
part. Assume that the probabilities of winning for the eight horses are 
( 1 I 1 J- r 1 A L- ). We can calculate the entropy of the horse race 2? 47 87 167 647 647 647 64 

as 
1 1 

H(x~=-~logz-q log i 4-;log;-$ log&-4&o& 

= 2 bits . (1.3) 

Suppose that we wish to send a message to another person indicating 
which horse won the race. One alternative is to send the index of the 
winning horse. This description requires 3 bits for any of the horses. But 
the win probabilities are not uniform. It therefore makes sense to use 
shorter descriptions for the more probable horses, and longer descrip- 
tions for the less probable ones, so that we achieve a lower average 
description length. For example, we could use the following set of bit 
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strings to represent the eight horses-O, 10, 110, 1110, 111100, 111101, 
111110, 111111. The average description length in this case is 2 bits, as 
opposed to 3 bits for the uniform code. Notice that the average descrip- 
tion length in this case is equal to the entropy. In Chapter 5, we show 
that the entropy of a random variable is a lower bound on the average 
number of bits required to represent the random variable and also on 
the average number of questions needed to identify the variable in a 
game of “twenty questions.” We also show how to construct representa- 
tions that have an average length within one bit of the entropy. 

The concept of entropy in information theory is closely connected with 
the concept of entropy in statistical mechanics. If we draw a sequence of 
n independent and identically distributed (i.i.d.1 random variables, we 
will show that the probability of a “typical” sequence is about 2-nH(X) 
and that there are about 2nncX’ such “typical” sequences. This property 
(known as the asymptotic equipartition property, or AEP) is the basis of 
many of the proofs in information theory. We later present other 
problems for which entropy arises as a natural answer (for example, the 
number of fair coin flips needed to generate a random variable). 

The notion of descriptive complexity of a random variable can be 
extended to define the descriptive complexity of a single string. The 
Kolmogorov complexity of a binary string is defined as the length of the 
shortest computer program that prints out the string. It will turn out 
that if the string is indeed random, the Kolmogorov complexity is close 
to the entropy. Kolmogorov complexity is a natural framework in which 
to consider problems of statistical inference and modeling and leads to a 
clearer understanding of Occam’s Razor “The simplest explanation is 
best.” We describe some simple properties of Kolmogorov complexity in 
Chapter 7. 

Entropy is the uncertainty of a single random variable. We can define 
conditional entropy, which is the entropy of a random variable, given 
another random variable. The reduction in uncertainty due to another 
random variable is called the mutual information. For two random 
variables X and Y this reduction is 

Pk Y) 1(x; Y> = H(X) - H(XIY) = c p(x, y) log p(x)p(y) . 
x, Y 

(1.4) 

The mutual information 1(X; Y> is a measure of the dependence between 
the two random variables. It is symmetric in X and Y and always 
non-negative. 

A communication channel is a system in which the output depends 
probabilistically on its input. It is characterized by a probability 
transition matrix that determines the conditional distribution of the 
output given the input. For a communication channel with input X and 
output Y, we define the capacity C by 
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c = T(y 1(X; Y> . (1.5) 

Later we show that the capacity is the maximum rate at which we can 
send information over the channel and recover the information at the 
output with a vanishingly low probability of error. We illustrate this 
with a few examples. 

Example 1.1.3 (Noiseless binary channel 1: For this channel, the bi- 
nary input is reproduced exactly at the output. This channel is illus- 
trated in Figure 1.3. Here, any transmitted bit is received without error. 
Hence, in each transmission, we can send 1 bit reliably to the receiver, 
and the capacity is 1 bit. We can also calculate the information capacity 
C = max 1(X, Y) = 1 bit. 

Example 1.1.4 (Noisy four-symbol channel): Consider the channel 
shown in Figure 1.4. In this channel, each input letter is received either 
as the same letter with probability l/2 or as the next letter with 
probability l/Z. If we use all four input symbols, then inspection of the 
output would not reveal with certainty which input symbol was sent. If, 
on the other hand, we use only two of the inputs (1 and 3 say), then we 
can immediately tell from the output which input symbol was sent. This 
channel then acts like the noiseless channel of the previous example, 
and we can send 1 bit per transmission over this channel with no errors. 
We can calculate the channel capacity C = max 1(X; Y> in this case, and 
it is equal to 1 bit per transmission, in agreement with the analysis 
above. 

In general, communication channels do not have the simple structure 
of this example, so we cannot always identify a subset of the inputs to 
send information without error. But if we consider a sequence of 
transmissions, then all channels look like this example and we can then 
identify a subset of the input sequences (the codewords) which can be 
used to transmit information over the channel in such a way that the 
sets of possible output sequences associated with each of the codewords 

o-0 

Figure 1.3. Noiseless binary channel. 
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Figure 1.4. A noisy channel. 
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are approximately disjoint. We can then look at the output sequence and 
identify the input sequence with a vanishingly low probability of error. 

Example 1.1.6 (Binary symmetric channel): This is the basic example 
of a noisy communication system. The channel is illustrated in 
Figure 1.5. 

The channel has a binary input, and its output is equal to the input 
with probability 1 - p. With probability p, on the other hand, a 0 is 
received as a 1, and vice versa. 

In this case, the capacity of the channel can be calculated to be 
C = 1 + p log p + (1 - p) log (1 - p) bits per transmission. However, it is 
no longer obvious how one can achieve this capacity. If we use the 
channel many times, however, the channel begins to look like the noisy 
four-symbol channel of the previous example, and we can send informa- 
tion at a rate C bits per transmission with an arbitrarily low probability 
of error. 

The ultimate limit on the rate of communication of information over a 
channel is given by the channel capacity. The channel coding theorem 
shows that this limit can be achieved by using codes with a long block 
length. In practical communication systems, there are limitations on the 
complexity of the codes that we can use, and therefore we may not be 
able to achieve capacity. 

Mutual information turns out to be a special case of a more general 
quantity called relative entropy D( p 11 a) which is a measure of the 
“distance” between two probability mass functions p and 4. It is defined 
as 

p(x) D(pllq)=cP(zm~-& - 
x 

(1.6) 

Although relative entropy is not a true metric, it has some of the 
properties of a metric. In particular, it is always non-negative and is 
zero if and only if p = Q. Relative entropy arises as the exponent in the 

1 -P 
0 

1 
1 -P 

Figure 1.5. Binary symmetric channel. 
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probability of error in a hypothesis test between distributions p and 4. 
Relative entropy can be used to define a geometry for probability 
distributions that allows us to interpret many of the results of large 
deviation theory. 

There are a number of parallels between information theory and the 
theory of investment in a stock market. A stock market is defined by a 
random vector X whose elements are non-negative numbers equal to the 
ratio of the price of a stock at the end of a day to the price at the 
beginning of the day. For a stock market with distribution F(x), we can 
define the doubling rate W as 

W= b:bi~~i=l I log btx dF(x) . (1.7) 

The doubling rate is the maximum asymptotic exponent in the growth of 
wealth. The doubling rate has a number of properties that parallel the 
properties of entropy. We explore some of these properties in 
Chapter 15. 

The quantities H, I, C, D, K, W arise naturally in the following areas: 
l Data compression. The entropy H of a random variable is a lower 

bound on the average length of the shortest description of the 
random variable. We can construct descriptions with average 
length within one bit of the entropy. 

If we relax the constraint of recovering the source perfectly, we 
can then ask what rates are required to describe the source up to 
distortion D? And what channel capacities are sufficient to enable 
the transmission of this source over the channel and its reconstruc- 
tion with distortion less than or equal to D? This is the subject of 
rate distortion theory. 

When we try to formalize the notion of the shortest description 
for non-random objects, we are led to the definition of Kolmogorov 
complexity K. Later, we will show that Kolmogorov complexity is 
universal and satisfies many of the intuitive requirements for the 
theory of shortest descriptions. 

l Data transmission. We consider the problem of transmitting 
information so that the receiver can decode the message with a 
small probability of error. Essentially, we wish to find codewords 
(sequences of input symbols to a channel) that are mutually far 
apart in the sense that their noisy versions (available at the output 
of the channel) are distinguishable. This is equivalent to sphere 
packing in high dimensional space. For any set of codewords it is 
possible to calculate the probability the receiver will make an 
error, i.e., make an incorrect decision as to which codeword was 
sent. However, in most cases, this calculation is tedious. 
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Using a randomly generated code, Shannon showed that one can 
send information at any rate below the capacity C of the channel 
with an arbitrarily low probability of error. The idea of a randomly 
generated code is very unusual. It provides the basis for a simple 
analysis of a very difficult problem. One of the key ideas in the 
proof is the concept of typical sequences. 

l Network information theory. Each of the topics previously 
mentioned involves a single source or a single channel. What if one 
wishes simultaneously to compress many sources and then put the 
compressed descriptions together into a joint reconstruction of the 
sources? This problem is solved by the Slepian-Wolf theorem. Or 
what if one has many senders independently sending information 
to a common receiver? What is the channel capacity of this 
channel? This is the multiple access channel solved by Liao and 
Ahlswede. Or what if one has one sender and many receivers and 
wishes to simultaneously communicate (perhaps different) 
information to each of the receivers? This is the broadcast channel. 
Finally, what if one has an arbitrary number of senders and 
receivers in an environment of interference and noise. What is the 
capacity region of achievable rates from the various senders to the 
receivers? This is the general network information theory problem. 
AI1 of the preceding problems fall into the general area of multiple- 
user or network information theory. Although hopes for a unified 
theory may be beyond current research techniques, there is still 
some hope that all the answers involve only elaborate forms of 
mutual information and relative entropy. 

l Ergodic theory. The asymptotic equipartition theorem states that 
most sample n-sequences of an ergodic process have probability 
about 2-“H and that there are about 2”H such typical sequences. 

l Hypothesis testing. The relative entropy D arises as the exponent 
in the probability of error in a hypothesis test between two 
distributions. It is a natural measure of distance between 
distributions. 

l Statistical mechanics. The entropy H arises in statistical 
mechanics as a measure of uncertainty or disorganization in a 
physical system. The second law of thermodynamics says that the 
entropy of a closed system cannot decrease. Later we provide some 
interpretations of the second law. 

l Inference. We can use the notion of Kolmogorov complexity K to 
find the shortest description of the data and use that as a model to 
predict what comes next. A model that maximizes the uncertainty 
or entropy yields the maximum entropy approach to inference. 

l Gambling and investment. The optimal exponent in the growth 
rate of wealth is given by the doubling rate W. For a horse race 
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with uniform odds, the sum of the doubling rate W and the entropy 
H is constant. The mutual information I between a horse race and 
some side information is an upper bound on the increase in the 
doubling rate due to the side information. Similar results hold for 
investment in a stock market. 
Probability theory. The asymptotic equipartition property (AEP) 
shows that most sequences are typical in that they have a sample 
entropy close to H. So attention can be restricted to these 
approximately ZnH typical sequences. In large deviation theory, the 
probability of a set is approximately 2-nD, where D is the relative 
entropy distance between the closest element in the set and the 
true distribution. 
CompZexity theory. The Kolmogorov complexity K is a measure of 
the descriptive complexity of an object. It is related to, but different 
from, computational complexity, which measures the time or space 
required for a computation. 

Information theoretic quantities like entropy and relative entropy 
arise again and again as the answers to the fundamental questions in 
communication and statistics. Before studying these questions, we shall 
study some of the properties of the answers. We begin in the next 
chapter with the definitions and the basic properties of entropy, relative 
entropy and mutual information. 


